If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x-1680=0
a = 3; b = -2; c = -1680;
Δ = b2-4ac
Δ = -22-4·3·(-1680)
Δ = 20164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20164}=142$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-142}{2*3}=\frac{-140}{6} =-23+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+142}{2*3}=\frac{144}{6} =24 $
| (4x-1)+(2x-7)+(5x+1)=180 | | 3n+8=58 | | x+-5=2*x-9 | | p=2+20 | | (4x^2+4x+1)(3x-7)=0 | | -8(3x-16)=41+5x | | (8x-4)+(x-7)+(5x+9)=180 | | x/5+1=-2 | | (2x+1)(2x+1)(3x-7)=0 | | 2000=34000x | | 2=3(9+7c) | | 2000=x34000 | | 9(k+8)=6-(-9k-66) | | (8x−4)+(x−7)+(5x+9)=180 | | 5x-5=6x+13 | | 3+z=45 | | 32x-15x=332 | | 3d−4=5 | | 13=w-14/12 | | 3p+2=5+3 | | w-4/15=31/3 | | y/6-3=-16 | | 4(10+6x)=280 | | x-1/3=-3 | | 98+x/41=122 | | 3(x+4)=2(-2x-1) | | W=-1.5+0.75h | | 61-15(x+)=x-19 | | 8.8v=-5.2844 | | 2d+4=5d-8 | | 76=x-12 | | 8=−2/3x. |